Journal of Advanced Pharmaceutical Technology & Research

ORIGINAL ARTICLE
Year
: 2018  |  Volume : 9  |  Issue : 4  |  Page : 124--129

Development and validation of simple simultaneous analysis for amlodipine and glibenclamide by nonderivatization high-performance liquid chromatography-fluorescence


Febrina Amelia Saputri1, Anisahtul Alawiyah1, Ayu Brilliany Firsty1, Sandra Megantara1, Arif Satria Wira Kusuma2, Taofik Rusdiana3, Aliya Nur Hasanah1, Mutakin Mutakin1, Ingrid S Surono4, Rizky Abdulah5 
1 Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Indonesia
2 Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Indonesia
3 Department of Pharmaceutical and Formulation Technology, Faculty of Pharmacy, Universitas Padjadjaran, Indonesia
4 Department of Food Technology, Faculty of Engineering, Bina Nusantara University, Indonesia
5 Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Indonesia

Correspondence Address:
Mrs. Febrina Amelia Saputri
Jl. Raya Bandung Sumedang, Km. 21, Jatinangor, Sumedang 45363
Indonesia

Studies have shown that about 65% of diabetics have hypertension. Treatment for diabetic patients with hypertension is usually given a combination of drugs such as amlodipine (AML) and glibenclamide (GLI). The aim of this study was to develop and validate the simple simultaneous analysis method for separation of AML and GLI using high-performance liquid chromatography (HPLC) with fluorescence detector without derivatization. The arrangement of isocratic and gradient methods, mobile phase compositions, and flow rates to develop and validate the simple simultaneous analysis method for separation of AML and GLI by nonderivatization HPLC fluorescence was done. Optimum condition was obtained using an RP 18 (125 mm × 4 mm, i.d., 5 μm) and guard column RP 18 (4 mm × 4 mm, i.d., 5 μm) with mobile phase composition containing acetonitrile and phosphate buffer pH 3.0 using a 20:80 gradient condition at flow rate 1.0 ml/min measured at 361 nm for λ excitation and 442 nm for λ emission for AML and 235 nm for λ excitation and 354 nm for λ emission for GLI. The analysis of AML and GLI demonstrated a valid result with r2 value 0.999, recoveries were 100.04% and 99.14% relative standard deviations were 0.508% and 0,797%, respectively, detection limits were 0.055 and 0.104 μg/ml, and quantification limits were 0.166 and 0.316 μg/ml, respectively. An accurate method of separation for AML and GLI using HPLC with fluorescence detector without derivatization has been validated.


How to cite this article:
Saputri FA, Alawiyah A, Firsty AB, Megantara S, Wira Kusuma AS, Rusdiana T, Hasanah AN, Mutakin M, Surono IS, Abdulah R. Development and validation of simple simultaneous analysis for amlodipine and glibenclamide by nonderivatization high-performance liquid chromatography-fluorescence.J Adv Pharm Technol Res 2018;9:124-129


How to cite this URL:
Saputri FA, Alawiyah A, Firsty AB, Megantara S, Wira Kusuma AS, Rusdiana T, Hasanah AN, Mutakin M, Surono IS, Abdulah R. Development and validation of simple simultaneous analysis for amlodipine and glibenclamide by nonderivatization high-performance liquid chromatography-fluorescence. J Adv Pharm Technol Res [serial online] 2018 [cited 2022 Sep 28 ];9:124-129
Available from: https://www.japtr.org/article.asp?issn=2231-4040;year=2018;volume=9;issue=4;spage=124;epage=129;aulast=Saputri;type=0