Home  |  About JAPTR |  Editorial board  |  Search |  Ahead of print  |  Current issue  |  Archives |  Submit article  |  Instructions  |  Subscribe  |  Advertise  |  Contacts  |Login 
Users Online: 1236   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
Year : 2023  |  Volume : 14  |  Issue : 1  |  Page : 29-33

Bioactive phytoconstituents of ethanolic extract from Chromolaena odorata leaves interact with vascular endothelial growth factor and cyclooxygenase-2: A molecular docking study

1 Graduate School of Mathematics and Applied Sciences, Banda Aceh, Indonesia
2 Laboratory of Microbiology, Faculty of Veterinary Medicine, Banda Aceh, Indonesia
3 Departement of Ear, Nose, Throat, Head and Neck Surgery, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
4 Departement of Internal Medicine, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia

Correspondence Address:
Prof. Kurnia Fitri Jamil
Department of Internal Medicine, Faculty of Medicine, Universitas Syiah Kuala, Jl. T. Abe, Darussalam, Banda Aceh, Aceh - 23111
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/japtr.japtr_520_22

Rights and Permissions

Chromolaena odorata is an invasive plant with a broad spectrum of medicinal properties, including wound healing. This study aimed to evaluate the interaction of the already identified bioactive phytoconstituents from ethanolic extracts of C. odorata leaves with two angiogenesis-related proteins – vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2) in silico. A molecular docking protocol was performed on AutoDock Vina employing the molecular structure of VEGF (3HNG) and COX-2 (3LN1) downloaded from the Protein Data Bank. The results reveal that most of the phytoconstituents possess strong binding affinity, where β-tocopherol and squalene have the highest values. In conclusion, it is highly possible that the phytoconstituents of C. odorata from the ethanolic leaf extract perform an interaction with VEGF and COX-2 and affect their activities.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded19    
    Comments [Add]    

Recommend this journal