Home  |  About JAPTR |  Editorial board  |  Search |  Ahead of print  |  Current issue  |  Archives |  Submit article  |  Instructions  |  Subscribe  |  Advertise  |  Contacts  |Login 
Users Online: 1260   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
     
ORIGINAL ARTICLE
Year : 2022  |  Volume : 13  |  Issue : 3  |  Page : 232-237

Serine racemase interaction with N-methyl-D-aspartate receptors antagonist reveals potential alternative target of chronic pain treatment: Molecular docking study


1 Department of Anesthesiology and Intensive Therapy, Faculty of Medicine, Brawijaya University/Dr. Saiful Anwar General Hospital, Malang, Indonesia
2 Department of Internal Medicine, Faculty of Medicine, Brawijaya University/Dr Saiful Anwar General Hospital, Malang, Indonesia
3 Department of Cardiology and Vascular Medicine, Faculty of Medicine, Brawijaya University/Dr Saiful Anwar General Hospital, Malang, Indonesia
4 Department of Biology, Faculty of Mathematics and Natural Science, Brawijaya University, Malang, Indonesia
5 Department of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia

Correspondence Address:
Dr. Ristiawan Muji Laksono
Department of Anesthesiology and Intensive Therapy, Faculty of Medicine, Brawijaya University/Dr. Saiful Anwar Malang, Jl. Jaksa Agung Suprapto no. 2 Malang, East Java
Indonesia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/japtr.japtr_72_22

Rights and Permissions

Serine racemase (SR) catalyzes L-serine racemization to activate the N-methyl-D-aspartate receptor (NMDAR). NMDAR activation is associated with the progression of acute-to-chronic neuropathic pain. This study aimed to investigate NMDAR antagonist interactions with SR to obtain potential chronic pain target therapy. Several NMDAR antagonist drugs were obtained from the drug bank, and malonate was used as a control inhibitor. Ligands were prepared using the open babel feature on PyRx. The SR structure was obtained from Protein data bank (PDB) (3l6B) and then docked with ligands using the AutoDock Vina. Haloperidol had a lower binding affinity than malonate and other ligands. Ethanol had the highest binding affinity than other drugs but could bind to the Adenosine triphosphate (ATP)-binding domain. Haloperidol is bound to reface that function for reprotonation in racemization reaction to produce D-serine. Halothane bond with Arg135 residues aligned negatively charged substrates to be reprotonated properly by reface. Tramadol is bound to amino acid residues in the triple serine loop, which determines the direction of the SR reaction. Several NMDAR antagonists such as haloperidol, halothane, ethanol, and tramadol bind to SR in the specific binding site. It reveals that SR potentially becomes an alternative target for chronic pain treatment.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed218    
    Printed0    
    Emailed0    
    PDF Downloaded32    
    Comments [Add]    

Recommend this journal