Home  |  About JAPTR |  Editorial board  |  Search |  Ahead of print  |  Current issue  |  Archives |  Submit article  |  Instructions  |  Subscribe  |  Advertise  |  Contacts  |Login 
Users Online: 143   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
Year : 2022  |  Volume : 13  |  Issue : 3  |  Page : 171-176

Improving of pelB-Secreted MPT64 protein released by Escherichia coli BL21 (DE3) using Triton X-100 and Tween-80

1 Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, Bandung, West Java, Indonesia
2 Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University; Research Center of Molecular Biotechnology and Bioinformatics, Padjadjaran University, Bandung, West Java, Indonesia
3 Department of Clinical Pathology, Faculty of Medical, Padjadjaran University, Bandung, West Java; Department of Clinical Pathology, Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
4 Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Sedang, Malaysia

Correspondence Address:
Dr. Sri Agung Fitri Kusuma
Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/japtr.japtr_25_22

Rights and Permissions

pelB has been known as a successful signal peptide to translocate the protein target extracellularly in the Escherichia coli system. However, in our previous study, the yield of MPT64 protein extracellular recovery was still low and plenty of this protein was remain trapped in cytoplasm and periplasm. Recently, nonionic surfactants were efficiently reported to secrete recombinant protein extracellularly. Nonetheless, it must be clarified whether the surfactant supplementation can improve the yield of MPT64 extracellular protein significantly without giving impact on the structure of isolated MPT64 protein and can minimized the cell lysis effect. MPT64 protein secretion was carried out by comparing the effects of surfactants Tween 80 and Triton × 100 at various concentrations. Triton × 100 was able to increase the extracellular MPT64 protein gain up to 3 times higher than Tween 80 and it was in line with the greater level ratio of cell leakage of Triton × 100 compared to that of Tween 80. Similarly, the viable cell of the cultures decreased dramatically. However, both surfactants did not interfere the structure of MPT64 protein. In conclusion, Triton × 100 can be chosen as the supporting surfactant to assist the act of peptide signal in improving the resulting of MPT64 extracellular protein.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded80    
    Comments [Add]    

Recommend this journal