Home  |  About JAPTR |  Editorial board  |  Search |  Ahead of print  |  Current issue  |  Archives |  Submit article  |  Instructions  |  Subscribe  |  Advertise  |  Contacts  |Login 
Users Online: 483   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
     
ORIGINAL ARTICLE
Year : 2022  |  Volume : 13  |  Issue : 2  |  Page : 89-94

Synthesis conditions and characterization of superparamagnetic iron oxide nanoparticles with oleic acid stabilizer


Department of Pharmacy, Faculty of Pharmacy, Universitas Indonesia, Depok, Indonesia

Correspondence Address:
Dr. Sutriyo Sutriyo
Department of Pharmacy, Faculty of Pharmacy, Universitas Indonesia, Depok 16424
Indonesia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/japtr.japtr_246_21

Rights and Permissions

Superparamagnetic iron oxide nanoparticles (SPIONs), part of magnetic nanoparticles, have been widely used in biomedical applications. Biocompatibility and magnetic properties make the SPIONs developed further by a lot of researchers. However, in the synthesis process, SPIONs can run into agglomeration. Oleic acid (OA) is one of the stabilizers to prevent agglomeration. This research aims to optimize the synthesis conditions and characterization of SPIONs with OA as a stabilizer. The synthesis of Superparamagnetic Iron Oxide Nanoparticles-Oleic Acid (SPIONs-OA) was performed using the coprecipitation method and was prepared with the addition of 0.75, 1.5, and 3%v/v OA and stirring rate of 750, 1500, 3000, 6000, 9000, and 12,000 rpm. The characterization of hydrodynamic size and polydispersity index was evaluated by dynamic light scattering. Meanwhile, the crystal structure was observed by X-ray diffraction. Then, Fourier transform infrared spectroscopy (FTIR) was used to analyze structures. The results showed that the hydrodynamic size was dependent on OA concentrations and stirring rate. The addition of 1.5%v/v OA and stirring conditions of 750 rpm resulted in the smallest hydrodynamic size and polydispersity index (83.71 ± 0.70 nm and 0.215 ± 0.01 nm, respectively). Based on the crystal structure analysis, the crystal shape was magnetic cubic, and the size of Fe3O4 crystallite changed from 11.38 to 5.61 nm. The FTIR indicated a strong chemical bond between the hydroxyl group of SPIONs and carboxylic acid of OA. In conclusion, the SPIONs-OA was successfully prepared with 1.5%v/v OA concentrations and a stirring rate of 750 rpm.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1828    
    Printed78    
    Emailed0    
    PDF Downloaded323    
    Comments [Add]    
    Cited by others 1    

Recommend this journal