Home  |  About JAPTR |  Editorial board  |  Search |  Ahead of print  |  Current issue  |  Archives |  Submit article  |  Instructions  |  Subscribe  |  Advertise  |  Contacts  |Login 
Users Online: 442   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
     
ORIGINAL ARTICLE
Year : 2022  |  Volume : 13  |  Issue : 1  |  Page : 70-76

Synthesis and cytotoxicity of the boron carrier pentagamaboronon-0-ol for boron neutron capture therapy against breast cancer


1 Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II; Department of Pharmaceutical Chemistry, Laboratory of Medicinal Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
2 Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia
3 Research Center of Boron Neutron Capture Therapy, Research Organization for the 21st Century, Osaka Prefecture University, Osaka, Japan
4 Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II; Department of Pharmaceutical Chemistry, Laboratory of Macromolecular Engineering, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, Indonesia

Correspondence Address:
Prof. Edy Meiyanto
Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta 55281; Department of Pharmaceutical Chemistry, Laboratory of Macromolecular Engineering, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta 55281
Indonesia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/japtr.japtr_220_21

Rights and Permissions

Boronic acid-containing curcumin analog, pentagamaboronon-0 (PGB-0), acts as a potential boron-carrier agent but has limited water solubility. Thus, a new compound (PGB-0-ol) with better chemical and pharmacological properties than PGB-0 has been synthesized. Molecular docking was performed using a molecular operating environment. Prediction of PGB-0-ol absorption, distribution, metabolism, and excretion (ADME) was performed using pkCSM software. PGB-0-ol was synthesized by adding NaBH4 to PGB-0 and stirring for 1 h. The crude PGB-0-ol was purified using preparative layer chromatography. Cell viability was evaluated using the trypan blue exclusion assay. In comparison to PGB-0 based on molecular docking study, PGB-0-ol could interact in with several cancer biomarkers, such as human epidermal growth factor2 epidermal growth factor receptor, IκB kinase, folate receptor-α, and integrin αvβ3. PGB-0-ol also showed an improved ADME profile because of its higher water solubility than PGB-0. PGB-0-ol was synthesized by selective ketone reduction of PGB-0 into primary alcohol by sodium borohydrate producing 30% yield. The cytotoxicity of PGB-0-ol against several breast cancer cells was lower than that of PGB-0. The novel compound PGB-0-ol was synthesized using simple steps. PGB-0-ol has low cytotoxicity against breast cancer cells and could be applied in boron neutron capture therapy as a boron carrier.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1062    
    Printed52    
    Emailed0    
    PDF Downloaded127    
    Comments [Add]    

Recommend this journal