Home  |  About JAPTR |  Editorial board  |  Search |  Ahead of print  |  Current issue  |  Archives |  Submit article  |  Instructions  |  Subscribe  |  Advertise  |  Contacts  |Login 
Users Online: 831   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
     
ORIGINAL ARTICLE
Year : 2021  |  Volume : 12  |  Issue : 4  |  Page : 378-383

Quantitative determination of dexamethasone sodium phosphate in bulk and pharmaceuticals at suitable pH values using the spectrophotometric method


Department of Pharmaceutical Chemistry, College of Pharmacy, University of Kerbala, Kerbala, Iraq

Correspondence Address:
Dr. Sura L Alkhafaji
Department of Pharmaceutical Chemistry, College of Pharmacy, University of Kerbala, Hai Al-Muadhafeen Campus, 56001 Kerbala
Iraq
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/japtr.japtr_6_21

Rights and Permissions

Dexamethasone sodium phosphate (DSP) is an ester of dexamethasone with anti-inflammatory action. This study provides new insights to develop a simple, precise, and accurate spectrophotometric method for the quantitative determination of DSP in bulk and pharmaceuticals. The method was validated before being applied to determine the DSP in six pharmaceutical injection forms from different companies. DSP is soluble in phosphate buffer, so it was used as a solvent, and a pH of 6 was found to be suitable for determination purposes. The DSP solution was scanned in the ultraviolet range (200–400 nm) using a double-beam spectrophotometer with a 1-cm quartz cell. The wavelength (λ max) of DSP was set at 242.5 nm, following the Beer–Lambert law for concentrations from 2 to 50 μg/ml. Dexa AIWA (Germany) showed the best results, being very close to the bulk value with no significant variation. Similarly, Dexamed (Cyprus) and HEMAZON (Syria) showed no significant differences from the bulk; however, the three remaining injections, DEXAKAL (India), DEXABRU (India), and DEXARON (China), showed significant variations from the bulk. Estimated limit of detection and limit of quantitation values for DSP were 0.83 and 2.5 μg/ml, respectively, with a regression coefficient of 0.999. Recovery studies were then used to determine the accuracy of the suggested method. The percentage of recovery was found to be 98.58%–102.52%. All results are suggesting a pivotal method for the routine analysis of DSP both in pure form and the commercially pharmaceutical forms.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed310    
    Printed12    
    Emailed0    
    PDF Downloaded37    
    Comments [Add]    

Recommend this journal