Home  |  About JAPTR |  Editorial board  |  Search |  Ahead of print  |  Current issue  |  Archives |  Submit article  |  Instructions  |  Subscribe  |  Advertise  |  Contacts  |Login 
Users Online: 1006   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
Year : 2021  |  Volume : 12  |  Issue : 3  |  Page : 267-273

Development and validation of an automated solid-phase extraction-LC-MS/MS method for the bioanalysis of fluoxetine in human plasma

1 Scientific Research Center, Prince Sultan Military Medical City, Al-Kharj, Riyadh, Saudi Arabia
2 Department of Pharmaceutical Sciences, College of Pharmacy and Dentistry, Buraydah Colleges, Alqassim, Saudi Arabia
3 Department of Pharmaceutical, Sciences SIHAS, Sam Higginbottom, University of Agriculture Technology and Sciences, Naini, Prayagraj, India
4 Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Riyadh, Saudi Arabia

Correspondence Address:
Dr. Mohd Faiyaz Khan
Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Riyadh
Saudi Arabia
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/japtr.JAPTR_308_20

Rights and Permissions

A wide-range, specific, and precise liquid chromatography tandem mass spectrometric (LC-MS/MS) technique for quantifying fluoxetine (FLX) in human plasma was developed using the RapidTrace® automated solid-phase extraction (SPE) method; the analyte and internal standard (IS) were extricated on Oasis MCX SPE cartridges. Acetonitrile and 5 mM ammonium formate buffer (90:10 v/v) were used as mobile phase to achieve chromatographic separation on the reverse phase (C<sub>18</sub> column). The analyte and IS were ionized using +ve electrospray ionization approach which was further traced by multiple-reaction monitoring on a tandem mass spectrometer. To quantify the FLX and FLX-d5, the parent-to-daughter ion transition of m/z of 310.0/44.1 and 315.0/44.0 was used, respectively. The method demonstrated a linear active limit of 0.20–30 ng/ml with recoveries ranging from 63.04% to 79.39% for quality control samples and 61.25% for IS samples. The concentrations over the calibration range demonstrated acceptable precision and accuracy. Due to the high inconsistency of the FLX concentration data, the minimum threshold of the assay was kept at 0.20 ng/ml. The flow rate was maintained at 500 <Symbol>μ</Symbol>L/min, and the time for sample analysis for each injection was 3.5 min. The method was found to be specific, sensitive, and faster with minimum utilization of organic solvents and was utilized further for metabolic and pharmacokinetic studies.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded52    
    Comments [Add]    

Recommend this journal