Home  |  About JAPTR |  Editorial board  |  Search |  Ahead of print  |  Current issue  |  Archives |  Submit article  |  Instructions  |  Subscribe  |  Advertise  |  Contacts  |Login 
Users Online: 1206   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
Year : 2021  |  Volume : 12  |  Issue : 3  |  Page : 254-260

Phytochemical screening, antimalarial activities, and genetic relationship of 16 indigenous Thai Asteraceae medicinal plants: A combinatorial approach using phylogeny and ethnobotanical bioprospecting in antimalarial drug discovery

Department of Public Health Sciences, College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand

Correspondence Address:
Dr. Kanchana Rungsihirunrat
College of Public Health Sciences, Chulalongkorn University, Bangkok 10330
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/japtr.JAPTR_238_21

Rights and Permissions

Emergence of artemisinin resistance leads the people to discover the new candidate for antimalarial drug. Combinatorial phylogeny and ethnobotanical approach may be useful to minimize the expenditure and time in laboratory testing. Seven hundred and thirty-three ethnomedicinal plants were listed from literature search. Obtained 340 internal transcribed spacer (ITS) sequences of plant list which met criteria were retrieved from GenBank NCBI and analyzed by MUSCLE and maximum likelihood phylogenetic test to generate the phylogenetic tree. Interactive phylogenetic tree was generated by Interactive Tree of Life (ITOL, https://itol.embl.de) and showed strong clustered pattern on Asteraceae. Afterward, 16 species of Asteraceae were selected to investigate the antimalarial activity, phytochemical, and genetic diversity. The presence of phytochemical was determined by standard method. DNA fluorescence-based assay was performed to determine the antimalarial activity against 3D7 Plasmodium falciparum. IC50 μg/mL was used to categorize antimalarial activity. On the other hand, ITS universal primer was used to amplify and sequence the obtained extracted DNA of tested plant by cetyltrimethylammonium bromide method. Phylogenetic analyses were performed by MAFFT and RAxML with automatic bootstrapping. ITOL and Adobe Illustrator were used to generate interactive phylogenetic tree. All species tested showed the presence of phenolics and flavonoids, whereas alkaloids and terpenoids were shown vary among tested extracts. Among 16 species tested, 1 species exhibited good-moderate (Sphaeranthus indicus, IC50 6.59 μg/mL), 4 weak (Artemisia chinensis, Artemisia vulgaris, Tridax procumbens, and Blumea balsamifera), and 3 very weak (Eupatorium capillifolium, Wedelia trilobata, and Vernonia cinerea). Generated phylogenetic tree by ITS data was able to separate the tested species into their tribal classification. In addition, new medicinal properties of A. chinensis were discovered. Combining phylogeny approach with ethnobotanical data is useful to narrow down the selection of antimalarial plants candidate.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded97    
    Comments [Add]    

Recommend this journal