Home  |  About JAPTR |  Editorial board  |  Search |  Ahead of print  |  Current issue  |  Archives |  Submit article  |  Instructions  |  Subscribe  |  Advertise  |  Contacts  |Login 
Users Online: 595   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
Year : 2021  |  Volume : 12  |  Issue : 3  |  Page : 242-249

Performance and drug deposition of kappa-carrageenan microspheres encapsulating ciprofloxacin HCl: Effect of polymer concentration

1 Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
2 Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia

Correspondence Address:
Dr. Dewi Melani Hariyadi
Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/japtr.JAPTR_197_21

Rights and Permissions

It has been known that in respiratory disease, antibiotic is selected for respiratory diseases or lung infections and this research focused on ciprofloxacin HCl as a model. The aim was to evaluate the effect of kappa-carrageenan polymer concentrations on characteristics, release, and drug deposition in the lung. Ciprofloxacin HCl-carrageenan microspheres were produced with kappa carrageenan (0.75%, 0.50%, and 0.25%) as polymer and KCl (1.5%) as crosslinker. Physical characteristics were included morphology, size, moisture content, swelling index, mucoadhesivity, drug loading, entrapment efficiency, and yield. Freeze-dried microspheres were inhaled by animal, and drug deposition was observed. Results showed that dried, smooth, and spherical microspheres of size of 1.34 to 1.70 μm and loading of 15.63% to 38.72%. Entrapment efficiency and yield were 25.38%–51.61% and 52.53%–63.19%, respectively. Mucoadhesivity was 0.0059–0.0096 kg force, and release in 24 h was 74.38%–81.02%. Release kinetics demonstrated Higuchi mechanism. Increasing carrageenan concentration affected size, loading, and efficiency but did not influence adhesivity, yield, and release. Higher amount of polymer caused the lower deposit on the lungs. Respirable size of ciprofloxacin HCl-kappa carrageenan microspheres was successfully achieved target site and prolonged residence time in lungs.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded94    
    Comments [Add]    

Recommend this journal