Home  |  About JAPTR |  Editorial board  |  Search |  Ahead of print  |  Current issue  |  Archives |  Submit article  |  Instructions  |  Subscribe  |  Advertise  |  Contacts  |Login 
Users Online: 674   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
Year : 2021  |  Volume : 12  |  Issue : 3  |  Page : 236-241

In silico estrogen receptor alpha antagonist studies and toxicity prediction of Melia azedarach leaves bioactive ethyl acetate fraction

1 Doctoral Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga; Department of Pharmaceutical Biology, Faculty of Pharmacy, Widya Mandala Catholic University, Surabaya, Indonesia
2 Doctoral Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya; Department of Pharmacy, Faculty of Health Sciences, Universitas Muhammadiyah Palangkaraya, Palangka Raya, Indonesia
3 Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
4 Department of Pharmacognosy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Higashihiroshima, Japan

Correspondence Address:
Prof. Sukardiman
Faculty of Pharmacy, Universitas Airlangga, Campus C Unair, Jl. Dr. Ir. H. Soekarno Mulyorejo, Surabaya 60115
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/japtr.JAPTR_198_21

Rights and Permissions

The estrogen hormone dependent accounts for a major cause in the incidence of women breast cancer. Thus, their receptor, especially the estrogen receptor α (ER-α), is becoming a target in endocrine treatment. These ligand-inducible nuclear functions are regulated by an array of phytochemical and synthetic compounds, such as 17 β-estradiol and tamoxifen (4-hydroxytamoxifen [4OHT]). The Chinaberry (Melia azedarach) leaves are known naturally for relieving internal and external diseases. Previous studies revealed the potency of Melia's ethanolic extract and ethyl acetate fractions as anticancer; furthermore, this study aimed to resolve possible ER-α antagonist's mechanism and safety from M. azedarach leaves ethyl acetate fraction contents. Melia's phytochemical content was analyzed with electrospray ionization liquid chromatography-mass spectrometry, while its ER-α antagonist's potency was investigated by in silico. The computational docking was used to 3ERT (a human ER-α-4OHT binding domain complex) with Autodock Vina and related programs. The results presented Energy binding (ΔG) of Melia's quercetin 3-O-(2'',6''-digalloyl)-β-D-galactopyranoside was similar to 4OHT, and lower than its agonist 17 β-estradiol. Furthermore, the toxicity prediction of these compounds were revealed safer than 4OHT. The Melia's leaves ethyl acetate fraction, therefore, is a potential pharmacological material for further studies.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded124    
    Comments [Add]    

Recommend this journal