Home  |  About JAPTR |  Editorial board  |  Search |  Ahead of print  |  Current issue  |  Archives |  Submit article  |  Instructions  |  Subscribe  |  Advertise  |  Contacts  |Login 
Users Online: 293   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
     
ORIGINAL ARTICLE
Year : 2021  |  Volume : 12  |  Issue : 3  |  Page : 232-235

Antimutagenic activity of nanoparticles of Rhaphidophora pinnata leaves in mice using micronucleus assay


1 Department of Pharmaceutical Chemistry, Universitas Sumatera Utara; Nanomedicine Centre, Universitas Sumatera Utara, Medan, 20155, Indonesia
2 Nanomedicine Centre; Department of Pharmacology Pharmacy Faculty of Pharmacy, Universitas Sumatera Utara, Medan, 20155, Indonesia
3 Department of Pharmaceutical Chemistry, Universitas Sumatera Utara, Medan, 20155, Indonesia

Correspondence Address:
Prof. Masfria Masfria
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155
Indonesia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/japtr.JAPTR_380_20

Rights and Permissions

Cancer is one of the deadliest diseases in the world. Cancer may occur due to gene mutation. Rhaphidophora pinnata is a plant that has many benefits, especially in the leaves which have been used traditionally to treat cancer. The aim of this research is to test the antimutagenic activity of nanoparticles R. pinnata using the micronucleus method. The mice were induced with cyclophosphamide and then followed with the administration of nanoparticles of R. pinnata at the doses of 50, 100, 200 mg/kg for 7 days. The antimutagenic activity was evaluated at the decrease in the number of micronucleus in 200 polychromatic erythrocytes (PCE) cells of mice bone marrow. The result showed that the reduction of amount of micronucleus in PCE of a negative control group, treatment groups, and normal group is 22.65%, 60.3%, 79.6%, 93.8%, and 100%. These results indicate that the antimutagenic activity of nanoparticle of R. pinnata increases proportionally as the doses were increased. It can be concluded that nanoparticles R. pinnata at the doses of 50, 100, and 200 mg/kg have antimutagenic activity.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed263    
    Printed4    
    Emailed0    
    PDF Downloaded38    
    Comments [Add]    

Recommend this journal