Home  |  About JAPTR |  Editorial board  |  Search |  Ahead of print  |  Current issue  |  Archives |  Submit article  |  Instructions  |  Subscribe  |  Advertise  |  Contacts  |Login 
Users Online: 2359   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
     
ORIGINAL ARTICLE
Year : 2021  |  Volume : 12  |  Issue : 2  |  Page : 196-208

Molecular docking studies of α-mangostin, γ-mangostin, and xanthone on peroxisome proliferator-activated receptor gamma diphenyl peptidase-4 enzyme, and aldose reductase enzyme as an antidiabetic drug candidate


1 Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institute Technology Bandung, Bandung, West Java; Department of Pharmacy, Mandala Waluya University, Kendari, Southeast Sulawesi, Indonesia
2 Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institute Technology Bandung, Bandung, West Java, Indonesia

Correspondence Address:
Mrs. Rifa'atul Mahmudah
Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institute Technology Bandung, Bandung, West Java; Department of Pharmacy, Mandala Waluya University, Kendari, Southeast Sulawesi
Indonesia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/japtr.JAPTR_255_20

Rights and Permissions

α-mangostin, γ-mangostin, and xanthone are some of the marker compounds found in mangosteen (Garcinia mangostana Linn.) whose activity on several treatment targets including toward the peroxisome proliferator-activated receptor gamma (PPAR-γ) receptors, diphenyl peptidase 4 (DPP-4) enzyme, and aldose reductase enzyme is unknown. Although this plant has been predicted to be used as an alternative antidiabetic treatment, it has been proven through several previous studies. This research study used three natural ligands (α-mangostin, γ-mangostin, and xanthone) whose training set was designed using Molecular Operating Environment and then compared them with several drugs on the market that are used in the treatment of diabetes mellitus. The docking molecular results showed that the α-mangostin and γ-mangostin compounds had activity toward PPAR-γ receptor, DPP-4 enzyme, and aldose reductase enzyme by showing almost similar affinity values when compared to the comparison ligands. Meanwhile, xanthone showed unfavorable results. This approach shows that α-mangostin and γ-mangostin are predicted to play a role as antidiabetic mellitus in mangosteen when viewed from these mechanisms.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed214    
    Printed0    
    Emailed0    
    PDF Downloaded45    
    Comments [Add]    

Recommend this journal