ORIGINAL ARTICLE |
|
Year : 2021 | Volume
: 12
| Issue : 2 | Page : 196-208 |
|
Molecular docking studies of α-mangostin, γ-mangostin, and xanthone on peroxisome proliferator-activated receptor gamma diphenyl peptidase-4 enzyme, and aldose reductase enzyme as an antidiabetic drug candidate
Rifa'atul Mahmudah1, I Ketut Adnyana2, Elin Yulinah Sukandar2
1 Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institute Technology Bandung, Bandung, West Java; Department of Pharmacy, Mandala Waluya University, Kendari, Southeast Sulawesi, Indonesia 2 Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institute Technology Bandung, Bandung, West Java, Indonesia
Correspondence Address:
Mrs. Rifa'atul Mahmudah Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institute Technology Bandung, Bandung, West Java; Department of Pharmacy, Mandala Waluya University, Kendari, Southeast Sulawesi Indonesia
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/japtr.JAPTR_255_20
|
|
α-mangostin, γ-mangostin, and xanthone are some of the marker compounds found in mangosteen (Garcinia mangostana Linn.) whose activity on several treatment targets including toward the peroxisome proliferator-activated receptor gamma (PPAR-γ) receptors, diphenyl peptidase 4 (DPP-4) enzyme, and aldose reductase enzyme is unknown. Although this plant has been predicted to be used as an alternative antidiabetic treatment, it has been proven through several previous studies. This research study used three natural ligands (α-mangostin, γ-mangostin, and xanthone) whose training set was designed using Molecular Operating Environment and then compared them with several drugs on the market that are used in the treatment of diabetes mellitus. The docking molecular results showed that the α-mangostin and γ-mangostin compounds had activity toward PPAR-γ receptor, DPP-4 enzyme, and aldose reductase enzyme by showing almost similar affinity values when compared to the comparison ligands. Meanwhile, xanthone showed unfavorable results. This approach shows that α-mangostin and γ-mangostin are predicted to play a role as antidiabetic mellitus in mangosteen when viewed from these mechanisms.
|
|
|
|
[FULL TEXT] [PDF]* |
|
 |
|