Home  |  About JAPTR |  Editorial board  |  Search |  Ahead of print  |  Current issue  |  Archives |  Submit article  |  Instructions  |  Subscribe  |  Advertise  |  Contacts  |Login 
Users Online: 4676   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
Year : 2021  |  Volume : 12  |  Issue : 2  |  Page : 120-126

Structure-based virtual screening of bioactive compounds from Indonesian medical plants against severe acute respiratory syndrome coronavirus-2

1 Department of Clinical Pharmacy, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
2 Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
3 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia

Correspondence Address:
Prof. Junaidi Khotib
Nanizar Zaman Joenoes Building, Mulyorejo, Surabaya City 60115, East Java
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/japtr.JAPTR_88_21

Rights and Permissions

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a virus that causes the infectious disease coronavirus disease-2019. Currently, there is no effective drug for the prevention and treatment of this virus. This study aimed to identify secondary metabolites that potentially inhibit the key proteins of SARS-CoV-2. This was an in silico molecular docking study of several secondary metabolites of Indonesian herbal plant compounds and other metabolites with antiviral testing history. Virtual screening using AutoDock Vina of 216 Lipinski rule-compliant plant metabolites was performed on 3C-like protease (3CLpro), RNA-dependent RNA polymerase (RdRp), and spike glycoprotein. Ligand preparation was performed using JChem and Schrödinger's software, and virtual protein elucidation was performed using AutoDockTools version 1.5.6. Virtual screening identified several RdRp, spike, and 3CLpro inhibitors. Justicidin D had binding affinities of −8.7, −8.1, and −7.6 kcal mol−1 on RdRp, 3CLpro, and spike, respectively. 10-methoxycamptothecin had binding affinities of −8.5 and −8.2 kcal mol−1 on RdRp and spike, respectively. Inoxanthone had binding affinities of −8.3 and −8.1 kcal mol−1 on RdRp and spike, respectively, while binding affinities of caribine were −9.0 and −7.5 mol−1 on 3CLpro and spike, respectively. Secondary metabolites of compounds from several plants were identified as potential agents for SARS-CoV-2 therapy.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded342    
    Comments [Add]    
    Cited by others 2    

Recommend this journal