Home  |  About JAPTR |  Editorial board  |  Search |  Ahead of print  |  Current issue  |  Archives |  Submit article  |  Instructions  |  Subscribe  |  Advertise  |  Contacts  |Login 
Users Online: 1   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
     
ORIGINAL ARTICLE
Year : 2021  |  Volume : 12  |  Issue : 1  |  Page : 8-13

In vitro cytotoxic, genotoxic, and antityrosinase activities of Clitoria macrophylla root


1 Department of Public Health Sciences Program, College of Public Health Sciences, Chulalongkorn University, Bangkok; Department of Thai Traditional Medicine, Faculty of Health and Sport Science, Thaksin University, Phatthalung, Thailand
2 Department of Public Health Sciences Program, College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
3 Department of Public Health Sciences Program, College of Public Health Sciences, Chulalongkorn University, Bangkok; Department of Pharmacognosy, College of Pharmacy, Rangsit University, Pathum Thani, Thailand

Correspondence Address:
Dr. Nijsiri Ruangrungsi
Department of Public Health Sciences Program, College of Public Health Sciences, Chulalongkorn University, Bangkok 10330
Thailand
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/japtr.JAPTR_94_20

Rights and Permissions

Clitoria macrophylla Wall. (Leguminosae), locally known as Non-tai-yak or An-chan-pa, commonly distributed in tropical nations and Southeast Asia. Regarding traditional Thai medical system, C. macrophylla roots carry out a potential in dermatology. Its roots are also used as insecticide in agriculture and animal farming. Moreover, clitoriacetal is the major component that can be detected in C. macrophylla root. This research aimed to assess the efficacy of C. macrophylla root extract and clitoriacetal for its anticancer and antityrosinase activities as well as to assess in vitro safety potential for its cytotoxic and genotoxic effects. C. macrophylla root and clitoriacetal were tested by brine shrimp lethality, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, comet assay, and antityrosinase activity. C. macrophylla root, clitoriacetal, and rotenone demonstrated the toxicity against brine shrimp nauplii with LC50 of 332.15, 136.54, and 0.15 μg/mL, respectively. C. macrophylla root and clitoriacetal showed cytotoxic potential against breast ductal carcinoma (BT-474), liver hepatoblastoma (Hep-G2), and colon adenocarcinoma (SW-620). At 100 μg/mL, the percent DNA damage of C. macrophylla root and clitoriacetal was 37.84% and 36.01%, respectively. C. macrophylla root and clitoriacetal were able to inhibit the tyrosinase enzyme with IC50 of 12.27 and 7.30 mg/mL, respectively, which less effective than glutathione (positive control). The present study revealed the in vitro biological activities of C. macrophylla root and its clitoriacetal constituent which proposed the scientific evidences in efficacy and safety evaluation including in vitro cytotoxicity, DNA damage as well as antityrosinase activities.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed3416    
    Printed114    
    Emailed0    
    PDF Downloaded465    
    Comments [Add]    
    Cited by others 1    

Recommend this journal