ORIGINAL ARTICLE |
|
Year : 2020 | Volume
: 11
| Issue : 4 | Page : 163-168 |
|
Anticancer evaluation of N-benzoyl-3-allylthiourea as potential antibreast cancer agent through enhances HER-2 expression
Tri Widiandani1, Siswandono1, Edy Meiyanto2
1 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60155, Indonesia 2 Department of Pharmaceutical Chemistry; Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
Correspondence Address:
Dr. Tri Widiandani Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60155; Gedung Nanizar Zaman Joenoes. Kampus C UNAIR, Jl Mulyorejo, Surabaya Indonesia
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/japtr.JAPTR_77_20
|
|
Breast cancer with HER-2 overexpression is sensitive to drugs which target the receptor or its kinase activity. Although the anti-HER-2 therapies commonly used have improved patient outcome, resistance usually occurs. In this present study, we investigated a modification of the chemical structure of allylthiourea derivatives in order to enhance the cytotoxicity effect on breast cancer cells with HER-2 overexpression. The aim of this research was to predict the absorption, distribution, metabolism, excretion, and toxicity by in silico study and to explore the effect N-benzoyl-3-allylthiourea (BATU) on MCF-7 cell line with overexpressing of HER-2 using MTT assay and western blot. The result showed that the cytotoxicity effects of BATU on MCF-7/HER-2 cell line (IC50value 0.64 mM) were higher than on MCF-7 cell lines (IC50value 1.47 mM). In addition, the cytotoxic effects of BATU on MCF-7 and MCF-7/HER-2 were higher than allylthiourea as a lead compound (IC50value 5.22 and 3.17 mM). The results also confirmed that the BATU compound has the ability to effectively enhance its cytotoxicity against MCF-7/HER-2 through enhanced HER-2 expression and inhibition of nuclear factor kappa B (NF-kB) activation. Above all, the BATU compound is effective in increasing HER-2 expression and inactivating NF-kB transcription factors, thereby resulting in inhibition of protein expression which works a significant part in cell proliferation. Therefore, the BATU compound has the potential to be developed as a complementary drug in breast cancer therapy with HER-2 positive.
|
|
|
|
[FULL TEXT] [PDF]* |
|
 |
|