Home  |  About JAPTR |  Editorial board  |  Search |  Ahead of print  |  Current issue  |  Archives |  Submit article  |  Instructions  |  Subscribe  |  Advertise  |  Contacts  |Login 
Users Online: 279   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
Year : 2020  |  Volume : 11  |  Issue : 1  |  Page : 1-5

Physicochemical properties of Arenga pinnata Merr. endosperm and its antidiabetic activity for nutraceutical application

1 Department of Chemistry, Universitas Sumatera Utara, Medan, Indonesia
2 Department of Physics, Universitas Sumatera Utara, Medan, Indonesia
3 Department of Pharmacology, Universitas Sumatera Utara, Medan, Indonesia
4 Department of Food Technology, An Giang University, Long Xuyen City; Department of Medical Biotechnology, Flinders University, Adelaide, Australia

Correspondence Address:
Dr. Juliati Br Tarigan
Jl. Bioteknologi No. 1 Kampus USU Padang Bulan, Medan 20155
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/japtr.JAPTR_91_19

Rights and Permissions

This study aims to provide information on physicochemical properties of Arenga pinnata endosperm (APE) and its antidiabetic activity for utilization in the food and pharmaceutical industries. The antidiabetic effect of APE was studied through an observational experiment on the blood glucose level of rats. The physicochemical properties of APE were determined using a texturometer, X-ray powder diffraction, Brookfield viscometer, scanning electron microscopy, Fourier-transform infrared spectroscopy, and light microscope. The APE was categorized based on its texture into three groups. The crystal structure of APE is microspore and amorf while the hydrogel has a non-Newtonian property and is stable at 50°C. The viscosity index was increased in the increasing temperature with the order of high viscosity of APE being 1, 2, and 3. The hydrogel shape of APE 1 and 3 was lameral in the concentration of 1.25%. For antidiabetic study, the findings demonstrated that the APE could reduce the blood glucose level. The APE powders 1 and 2 with the respective weight of 50 and 200 mg have significant effects on reducing rat blood glucose level compared to the diabetic rats. Based on these properties, APE could potentially be used as a natural antidiabetic food without having any side effect and in the pharmaceutical industry for some purposes.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded472    
    Comments [Add]    
    Cited by others 1    

Recommend this journal