Home  |  About JAPTR |  Editorial board  |  Search |  Ahead of print  |  Current issue  |  Archives |  Submit article  |  Instructions  |  Subscribe  |  Advertise  |  Contacts  |Login 
Users Online: 5239   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
     
ORIGINAL ARTICLE
Year : 2017  |  Volume : 8  |  Issue : 3  |  Page : 86-90

African peppermint (Mentha piperita) from Morocco: Chemical composition and antimicrobial properties of essential oil


1 Department of Biology, Laboratory of Microbial Biotechnology, Faculty of Science and Technology Saïss, Sidi Mohamed Ben Abdellah University, Fez, Morocco
2 Department of Chemistry, Laboratory of Organic Chemistry, Faculty of Science and Technology Saïss, Sidi Mohamed Ben Abdellah University, Fez, Morocco

Correspondence Address:
Kawtar Fikri-Benbrahim
Laboratory of Microbial Biotechnology, Faculty of Science and Technology Saïss, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Fez
Morocco
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/japtr.JAPTR_11_17

Rights and Permissions

To replace and avoid synthetic chemicals toxicity, there is a growing interest in the investigation of natural products from plant origin for the discovery of active compounds with antimicrobial properties. This work was devoted to determine chemical composition and antimicrobial properties of the EO of M. piperita harvested in the garden of the National Institute of Medicinal and Aromatic Plants of Morocco. Experiments have been conducted at the Microbial Biotechnology Laboratory at the Sciences and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco. M. piperita oil was screened for its antimicrobial activity against seven bacteria and two fungi using broth microdilution method. Chemical EO analysis was performed using CPG/MS. The EO revealed menthol (46.32%), menthofuran (13.18%), menthyl acetate (12.10%), menthone (7.42%), and 1,8-cineole (6.06%) as the main constituents. The tested EO exhibited strong inhibitory effect against all tested microorganisms with minimum inhibitory concentrations ranging from 0.062% to 0.5% (v/v), except for Pseudomonas aeruginosa that was the least sensitive and was only inhibited by concentrations as high as 0.5% (v/v). The studied EO showed an antimicrobial potential. This reinforces its use as an alternative to chemical additives that can be applied to the food and drug industry.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed3877    
    Printed56    
    Emailed0    
    PDF Downloaded520    
    Comments [Add]    

Recommend this journal