Home  |  About JAPTR |  Editorial board  |  Search |  Ahead of print  |  Current issue  |  Archives |  Submit article  |  Instructions  |  Subscribe  |  Advertise  |  Contacts  |Login 
Users Online: 183   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
Year : 2016  |  Volume : 7  |  Issue : 3  |  Page : 110-114

Evaluating bionanoparticle infused fungal metabolites as a novel antimicrobial agent

1 Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India
2 Department of Chemistry, P.M.B. Gujarati Science College, Indore, Madhya Pradesh, India

Correspondence Address:
Ajit Varma
Dist. Scientist and Prof. of Eminence Amity Institute of Microbial Technology, Amity University, Sector 125, Noida - 201 303, Uttar Pradesh
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/2231-4040.184593

Rights and Permissions

Therapeutic properties of fungal metabolites and silver nanoparticles have been well documented. While fungal metabolites have been used for centuries as medicinal drugs, potential of biogenic silver nanoparticles has recently received attention. We have evaluated the antimicrobial potential of Aspergillus terreus crude extract, silver nanoparticles and an amalgamation of both against four pathogenic bacterial strains. Antimicrobial activity of the following was evaluated – A. terreus extract, biogenic silver nanoparticles, and a mixture containing extract and nanoparticles. Four pathogenic bacteria - Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, and Bacillus cereus were used as test organisms. Phenol, flavonoid, and alkaloid content of extract were determined to understand the chemical profile of the fungus. The extract contained significantly high amounts of phenols, flavonoids, and alkaloids. The extract and biogenic silver nanoparticle exhibited significant antibacterial activity at concentrations of 10 μg/ml and 1 μg/ml, respectively. When used in combination, the extract-nanoparticle mixture showed equally potent antibacterial activity at a much lower concentration of 2.5 μg/ml extract + 0.5 μg/ml nanoparticle. Given its high antibacterial potential, the fungal extract can be a promising source of novel drug lead compounds. The extract – silver nanoparticle mixture exhibited synergism in their antibacterial efficacy. This property can be further used to formulate new age drugs.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded332    
    Comments [Add]    
    Cited by others 1    

Recommend this journal