Home  |  About JAPTR |  Editorial board  |  Search |  Ahead of print  |  Current issue  |  Archives |  Submit article  |  Instructions  |  Subscribe  |  Advertise  |  Contacts  |Login 
Users Online: 44   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
Year : 2016  |  Volume : 7  |  Issue : 2  |  Page : 59-63

In vivo antimalarial activity of extracts of Tanzanian medicinal plants used for the treatment of malaria

1 Department of Biological and Pre-Clinical Studies, Institute of Traditional Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
2 National Institute for Medical Research, Dar es Salaam, Tanzania
3 Department of Parasitology and Medical Entomology, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania

Correspondence Address:
Ramadhani SO Nondo
Department of Biological and Preclinical Studies, Institute of Traditional Medicine, Muhimbili University of Health and Allied Sciences, P. O. Box: 65001, Dar es Salaam
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/2231-4040.179748

Rights and Permissions

Plants used in traditional medicine have been the source of a number of currently used antimalarial medicines and continue to be a promising resource for the discovery of new classes of antimalarial compounds. The aim of this study was to evaluate in vivo antimalarial activity of four plants; Erythrina schliebenii Harms, Holarrhena pubescens Buch-Ham, Phyllanthus nummulariifolius Poir, and Caesalpinia bonducella (L.) Flem used for treatment of malaria in Tanzania. In vivo antimalarial activity was assessed using the 4-day suppressive antimalarial assay. Mice were infected by injection via tail vein with 2 Χ 10 7 erythrocytes infected with Plasmodium berghei ANKA. Extracts were administered orally, once daily, for a total of four daily doses from the day of infection. Chloroquine (10 mg/kg/day) and solvent (5 mL/kg/day) were used as positive and negative controls, respectively. The extracts of C. bonducella, E. schliebenii, H. pubescens, and P. nummulariifolius exhibited dose-dependent suppression of parasite growth in vivo in mice, with the highest suppression being by C. bonducella extract. While each of the plant extracts has potential to yield useful antimalarial compounds, the dichloromethane root extract of C. bonducella seems to be the most promising for isolation of active antimalarial compound(s). In vivo antimalarial activity presented in this study supports traditional uses of C. bonducella roots, E. schliebenii stem barks, H. pubescens roots, and P. nummulariifolius for treatment of malaria.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded611    
    Comments [Add]    
    Cited by others 7    

Recommend this journal