Home  |  About JAPTR |  Editorial board  |  Search |  Ahead of print  |  Current issue  |  Archives |  Submit article  |  Instructions  |  Subscribe  |  Advertise  |  Contacts  |Login 
Users Online: 297   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
     
ORIGINAL ARTICLE
Year : 2011  |  Volume : 2  |  Issue : 1  |  Page : 9-16

Formulation and development of a self-nanoemulsifying drug delivery system of irbesartan


1 Department of Pharmaceutics, Atmiya Institute of Pharmacy, Kalawad Road, Rajkot, Gujarat, India
2 Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, India

Correspondence Address:
Jaydeep Patel
Atmiya Institute of Pharmacy, Kalawad Road, Rajkot - 360 005, Gujarat
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2231-4040.79799

Rights and Permissions

Irbesartan (IRB) is an angiotensin II receptor blocker antihypertensive agent. The aim of the present investigation was to develop a self-nanoemulsifying drug delivery system (SNEDDS) to enhance the oral bioavailability of poorly water-soluble IRB. The solubility of IRB in various oils was determined to identify the oil phase of SNEDDS. Various surfactants and co-surfactants were screened for their ability to emulsify the selected oil. Pseudoternary phase diagrams were constructed to identify the efficient self-emulsifying region. The optimized SNEDDS formulation contained IRB (75 mg), Cremophor® EL (43.33%), Carbitol® (21.67%) and Capryol® 90 (32%). SNEDDS was further evaluated for its percentage transmittance, emulsification time, drug content, phase separation, dilution, droplet size and zeta potential. The optimized formulation of IRB-loaded SNEDDS exhibited complete in vitro drug release in 15 min as compared with the plain drug, which had a limited dissolution rate. It was also compared with the pure drug solution by oral administration in male Wister rats. The in vivo study exhibited a 7.5-fold increase in the oral bioavailability of IRB from SNEDDS compared with the pure drug solution. These results suggest the potential use of SNEDDS to improve dissolution and oral bioavailability of poorly water-soluble IRB.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed7964    
    Printed336    
    Emailed4    
    PDF Downloaded948    
    Comments [Add]    
    Cited by others 34    

Recommend this journal