Home  |  About JAPTR |  Editorial board  |  Search |  Ahead of print  |  Current issue  |  Archives |  Submit article  |  Instructions  |  Subscribe  |  Advertise  |  Contacts  |Login 
Users Online: 167   Home Print this page Email this page Small font sizeDefault font sizeIncrease font size
     
REVIEW ARTICLE
Year : 2010  |  Volume : 1  |  Issue : 3  |  Page : 302-310

Recent trends in the impurity profile of pharmaceuticals


1 Department of Pharmaceutics, Shivdan Singh Institute of Technology and Management, Aligarh, U.P, India
2 Department of Pharmaceutics, V.N.S. Institute of Pharmacy, Bhopal, M.P, India
3 Department of Pharmaceutics, SGSITS, Indore, M.P, India
4 Department of Pharmaceutics, Oriental College of Pharmacy, Bhopal, M.P, India

Correspondence Address:
Harish K Chandrawanshi
Department of Pharmaceutics, Saraswati Nagar, Vidisha - 464 001, M.P
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0110-5558.72422

Rights and Permissions

Various regulatory authorities such as the International Conference on Harmonization (ICH), the United States Food and Drug administration (FDA), and the Canadian Drug and Health Agency (CDHA) are emphasizing on the purity requirements and the identification of impurities in Active Pharmaceutical Ingredients (APIs). The various sources of impurity in pharmaceutical products are - reagents, heavy metals, ligands, catalysts, other materials like filter aids, charcoal, and the like, degraded end products obtained during \ after manufacturing of bulk drugs from hydrolysis, photolytic cleavage, oxidative degradation, decarboxylation, enantiomeric impurity, and so on. The different pharmacopoeias such as the British Pharmacopoeia, United State Pharmacopoeia, and Indian Pharmacopoeia are slowly incorporating limits to allowable levels of impurities present in APIs or formulations. Various methods are used to isolate and characterize impurities in pharmaceuticals, such as, capillary electrophoresis, electron paramagnetic resonance, gas-liquid chromatography, gravimetric analysis, high performance liquid chromatography, solid-phase extraction methods, liquid-liquid extraction method, Ultraviolet Spectrometry, infrared spectroscopy, supercritical fluid extraction column chromatography, mass spectrometry, Nuclear magnetic resonance (NMR) spectroscopy, and RAMAN spectroscopy. Among all hyphenated techniques, the most exploited techniques for impurity profiling of drugs are Liquid Chromatography (LC)-Mass Spectroscopy (MS), LC-NMR, LC-NMR-MS, GC-MS, and LC-MS. This reveals the need and scope of impurity profiling of drugs in pharmaceutical research.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed10891    
    Printed388    
    Emailed5    
    PDF Downloaded1242    
    Comments [Add]    
    Cited by others 19    

Recommend this journal